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aversion. One main finding is that the demand for jump risk now also includes a
hedging component, which is not present in models without jumps in volatility.
Second, we show in a partial equilibrium framework that the introduction of non-
linear derivative contracts can have a substantial economic value. Third, we analyze
the distribution of terminal wealth for an investor who uses the wrong model when
making portfolio choices, either by ignoring volatility jumps or by falsely including
such jumps although they are not present in the true model. In both cases the
terminal wealth distribution exhibits fatter tails than under the correctly specified
model, as well as significant default risk. Volatility jumps are thus an important risk
factor in portfolio planning.

JEL: G12, G13

Keywords: Dynamic asset allocation, jump risk, volatility jumps, stochastic volati-
lity, model mis-specification



Optimal Portfolios when Volatility can Jump

Nicole Branger§ Christian Schlag‡ Eva Schneider¶

This version: November 30, 2005

Abstract

We consider an asset allocation problem in a continuous-time model with stochastic
volatility and (possibly correlated) jumps in both the asset price and its volatility.
First, we derive the optimal portfolio for an investor with constant relative risk
aversion. One main finding is that the demand for jump risk now also includes a
hedging component, which is not present in models without jumps in volatility.
Second, we show in a partial equilibrium framework that the introduction of non-
linear derivative contracts can have a substantial economic value. Third, we analyze
the distribution of terminal wealth for an investor who uses the wrong model when
making portfolio choices, either by ignoring volatility jumps or by falsely including
such jumps although they are not present in the true model. In both cases the
terminal wealth distribution exhibits fatter tails than under the correctly specified
model, as well as significant default risk. Volatility jumps are thus an important risk
factor in portfolio planning.

Keywords: Dynamic asset allocation, jump risk, volatility jumps, stochastic volati-
lity, model mis-specification

JEL: G12, G13

§Department of Business and Economics, University of Southern Denmark, Campusvej 55, DK-5230
Odense M, Denmark, phone: +45 (6550) 3227, fax:+45 6615 8790, e-mail: nbr@sam.sdu.dk

‡Finance Department, Goethe University, Mertonstr. 17-21/Uni-Pf 77, D-60054 Frankfurt am Main,
Germany, phone: +49 (69) 798 22674, fax: +49 (69) 798 22788, e-mail: schlag@finance.uni-frankfurt.de

¶Finance Department, Goethe University, Mertonstr. 17-21/Uni-Pf 77, D-60054 Frankfurt am Main,
Germany, phone: +49 (69) 798 25178, fax: +49 (69) 798 22788, e-mail: schneider@finance.uni-frankfurt.de

Earlier versions of the paper were presented at Vanderbilt University, Universität Göttingen, the Eu-
ropean Summer Symposium in Financial Markets in Gerzensee, 2005, at the Annual Meetings of the
German Finance Association in Augsburg, 2005, and at Copenhagen Business School. We thank the
participants for helpful comments. Special thanks go to Holger Kraft.



1 Introduction and Motivation

The key risk factors considered in option pricing models, besides the diffusive price risk
of the underlying asset, are stochastic volatility, jumps in the asset price, and also jumps
in volatility. Models that include some or all of these factors were developed by Merton
(1976), Heston (1993), Bates (1996), Bakshi, Cao, and Chen (1997), and Duffie, Pan, and
Singleton (2000). The importance of jumps in volatility has become apparent in recent
studies, which try to explain the time series properties of stock and option prices simul-
taneously, like Eraker, Johannes, and Polson (2003), or Broadie, Chernov, and Johannes
(2005).

In this paper, we analyze the importance and impact of jumps in volatility for portfolio
planning. First of all, we investigate the impact of jumps in volatility on the investor’s
optimal portfolio and on its structure. Second, we assess the utility gain generated by the
availability of derivatives in this economy. Third, we analyze the distribution of terminal
wealth for an investor who uses the wrong model, namely either one that does not contain
volatility jumps although the true model does, or one containing such jumps although they
are not part of the true model. Our results show that jumps in volatility are an important
risk factor when it comes to portfolio planning. Their inclusion or omission changes the
structure of the optimal portfolio. Furthermore, the use of a wrong model that either
ignores volatility jumps or wrongly includes them results in economically significant utility
losses.

There are important fundamental differences between stochastic volatility and stochas-
tic jumps, as shown in the area of contingent claim pricing by Das and Sundaram (1999)
and Carr and Wu (2002), and concerning option hedges by Branger and Schlag (2004).
In an asset allocation context the main papers analyzing the impact of jumps are Liu,
Longstaff, and Pan (2003), Liu and Pan (2003) and Dieckmann and Gallmeyer (2004).
Whereas Dieckmann and Gallmeyer (2004) consider the allocation of diffusive and jump
risks between heterogeneous agents in a pure exchange economy, Liu, Longstaff, and Pan
(2003) and Liu and Pan (2003) are operating in a partial equilibrium framework.

Our analysis ties up some loose ends in the literature on asset allocation in continuous-
time models with jumps. We consider the portfolio planning problem in a very general
setup with stochastic volatility, jumps in the stock price, and, in particular, jumps in
volatility. Thereby, we extend the comparison of diffusion risk and jump risk in Liu,
Longstaff, and Pan (2003) to the more realistic case when derivatives are actually available
to the investor. By considering a model that includes jumps in volatility, we also extend
the framework in Liu and Pan (2003) who study the benefits from trading derivatives in
a model without jumps in volatility.

Our framework represents a significant generalization of both of these papers. We
solve the model in closed form for the case of imperfectly correlated jumps in the stock
price and in volatility. Our model can capture jumps in the stock price only, jumps in
volatility only, and simultaneous jumps in both processes. We can thus analyze structural
differences between these kinds of jumps. For the numerical analysis, we restrict the model
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to the more simple case where jump sizes are deterministic and where both the stock and
the volatility jump simultaneously. This allows us to focus on the key aspects of our
model and it also allows for an easy comparison with the results of Liu, Longstaff, and
Pan (2003) and Liu and Pan (2003).

First, we derive the optimal portfolio of an investor with constant relative risk aver-
sion and analyze its structure. To concentrate on the impact of jumps, we assume that
the market is complete, i.e. enough derivatives are traded. In the spirit of Merton (1971)
we separate the overall demand for a risk factor into a speculative component, which
represents the investor’s desire to earn the associated risk premium, and the hedging
component, which serves to protect the investor against unfavorable changes in the in-
vestment opportunity set. Our main finding is that, with jumps in volatility, the optimal
demand for jump risk now also contains a hedging component, which is not present in
the Liu and Pan (2003) economy without jumps in volatility. Intuitively, the hedging de-
mand can be explained by the desire of the investor to hedge against future unfavorable
changes in volatility. When jumps have an impact on volatility, part of this hedging can
be achieved by trading jump risk, while in the case without jumps in volatility, all the
hedging has to be done by trading diffusion risk. The omission of jump risk in volatility
will thus lead to an overestimation of the hedging demand for diffusion risk.

Second, we determine the economic value of trading in derivatives. Derivatives are a
vehicle to achieve the optimal exposure to the fundamental risk factors in an economy, i.e.
to diffusions and jump components. The introduction of derivatives thus always increases
the investor’s utility in a partial equilibrium model, where we assume the market prices of
existing assets to remain unchanged. We measure the economic gain due to derivatives by
the annualized percentage increase in certainty equivalent wealth, which can be thought
of as a kind of an additional interest rate. Our results show that this gain is economically
significant.

Third, we analyze the impact of model mis-specification on the portfolio planning
problem. Given that the true model is not known and has to be estimated, we assume that
the investor either wrongly uses a model without jumps in volatility which is calibrated
to market data, or that he includes volatility jumps in the asset allocation although they
are not present in the true data generating process. In both situations with model mis-
specification, we show that the distribution of terminal wealth exhibits more mass in both,
the left and the right tail. In particular, the risk of obtaining a very low terminal wealth
and thus of bankruptcy increases significantly. Our results show that neither the use of a
too parsimonious nor of a too sophisticated model provides a simple robust hedge with
respect to model risk.

Our paper is mainly related to Liu, Longstaff, and Pan (2003) andLiu and Pan (2003).
In a stochastic volatility model with deterministic jumps in the stock price and no jumps
in volatility, Liu and Pan (2003) derive closed-form solutions for the optimal portfolio
composition in the case of a CRRA utility function. They show that derivatives can be
used to achieve the desired exposure to each risk factor. The reason is that such nonlinear
contracts can be employed to disentangle jump risk and diffusion risk which, in the case
of the stock, are only available as one ’package’. Furthermore, derivatives allow to trade
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volatility risk. Liu, Longstaff, and Pan (2003) propose a more general framework for the
dynamics of the state variables by including volatility jumps, but restrict the set of traded
assets to the stock and the money market account. They find that compared to the case
of no stock price jumps, the investor reduces the position in the risky asset even when
jumps are upward. In the most general case with jumps in both price and volatility the
position in the risky asset can increase or decrease compared to the no jump case, since
jumps in volatility enable at least a partial hedging of jumps in the stock price.

Another paper related to ours is the study by Daglish (2002). He considers the same
fundamental model as Liu, Longstaff, and Pan (2003), but allows for stochastic jumps
instead of assuming deterministic jump sizes. With the stock and the money market ac-
count only, the market is incomplete. There are no closed-form solutions and the analysis
has to be done numerically. For the case of log-normally distributed jumps, his results
confirm those of Liu, Longstaff, and Pan (2003). Since the market is incomplete, it is thus
no longer possible to work in terms of risk factors, but one has to consider demands for
exogenously given specific assets instead. In contrast, we retain a complete market by
assuming that a sufficiently large number of derivatives is traded to span even stochas-
tic jumps which are drawn from a discrete distribution. This allows us to focus on the
structural impact of jumps.

Wu (2003) investigates a jump-diffusion model, in which the diffusion risk premium
follows an Ornstein-Uhlenbeck process. With the stock and the money market account
as traded assets, he finds that there is interaction between return predictability and the
impact of jump risk. He also provides a detailed analysis of the impact of jumps as the
source of non-normality on portfolio decisions in one-period and multi-period models.
Ilhan, Jonsson, and Sircar (2004) compute asymptotic approximations to the optimal
derivative holdings based on an indifference argument in a world with purely diffusive
stochastic volatility. Finally, Das and Uppal (2004) analyze the impact of systemic jump
risk on the optimal portfolio and on the utility of an investor with CRRA, as well as the
utility loss when this risk is ignored. In their paper, systemic jump risk is modeled as a
common jump across all asset prices but does not comprehend jumps in volatility.

The remainder of the paper is structured as follows. In Section 2 we present the model.
Section 3 contains the solution to the portfolio planning problem and its economic inter-
pretation. Section 4 provides a numerical example for the impact of jumps in volatility.
The economic value of derivatives in the context of our model is discussed in Section 5
and model mis-specification is analyzed in Section 6. Section 7 concludes.
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2 Model Setup

The dynamics of the stock price S and the instantaneous variance V under the true
measure P are given by the following system of stochastic differential equations:

dSt = µtStdt+
√
VtStdB

(1)
t + St−

(∑
j,k

x(j) dN
(j,k)
t − EP [X]λPVtdt

)
(1)

dVt = κP (v̄P − Vt)dt+ σV

√
Vt

(
ρdB

(1)
t +

√
1− ρ2dB

(2)
t

)
+

(∑
j,k

y(k) dN
(j,k)
t − EP [Y ]λPVtdt

)
. (2)

The asset price and variance are driven by the independent Brownian motions B(1) and
B(2) and by M ≡ J · K independent Poisson processes N

(j,k)
t , each with (stochastic)

intensity λPVtpjk. The physical probability that a jump occurs over the next interval of
length dt at all is equal to λPVtdt, and given that a jump has occurred, the random jump
sizes (X, Y ) have realizations (x(j), y(k)) with probabilities pjk. In general, the jump sizes
for both, the asset price and the variance, are stochastic. We assume that these jump
sizes are discrete random variables with possible realizations x(j), j = 1, . . . , J for the
stock and y(k), k = 1, . . . , K for the variance. The variance jumps have to be restricted
to y(k) ≥ 0 for k = 1, . . . , K, in order to avoid negative values for V . v̄P is the long-run
mean of the variance.

This setup allows us to model three different kinds of jumps: jumps in the stock
price only, jumps in the variance only, and simultaneous jumps in both processes. We set
x(1) = 0 and y(1) = 0. Table 1 summarizes the structure. Jumps in the stock price only
can be described by pairs (x(j), y(1)) = (x(j), 0) for j ≥ 2. These jumps have an individual
intensity under the P -measure equal to λPVtpj1, so that the intensity for a pure stock

price jump is given by λPVt

∑J
j=2 pj1. Analogously, pure variance jumps are represented

by pairs (x(1), y(k)) = (0, y(k)) for k ≥ 2. The P -intensity for such a jump is given by
λPVt

∑K
k=2 p1k. The rest of the probability mass is distributed over all possible realizations

of simultaneous jumps (x(j), y(k)), j, k ≥ 2 in the stock price and in V . The correlation
structure of price and variance jumps can be generated by an appropriate specification
of the joint probabilities. Note that the event (x(1), y(1)) = (0, 0) is not considered in the
jump size distribution (i.e. is assigned a zero probability), since it obviously represents the
case of no jump at all. Even if we do not restrict the joint distribution of X and Y besides
y(k) ≥ 0 for all k = 1, . . . , K, the most natural and empirically well-supported structure
would be one with a negative jump size for prices (at least on average) and upward jumps
in volatility. A typical jump event would thus decrease prices and simultaneously increase
volatility, which can be regarded as an increase in uncertainty after a market crash.

The interest rate r is constant. The market prices of risk in our model are not unique,
but have to be given exogenously. Following Liu and Pan (2003), we specify the pricing
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kernel ξ via the stochastic differential equation

dξt = −ξt
(
rdt+ ηB1

√
VtdB

(1)
t + ηB2

√
VtdB

(2)
t

)
+ ξt−

{∑
j,k

(
λQqjk
λPpjk

− 1

)
dN

(j,k)
t −

(
λQ

λP
− 1

)
λPVtdt

}
.

The market price of risk ηB1Vt represents the compensation per unit of
√
VtdB

(1)
t , while

ηB2Vt is the expected reward for bearing one unit of
√
VtdB

(2)
t . The compensation for an

exposure of +α to a jump of size (x(j), y(k)) (i.e. for an increase in wealth of α · 100% if
such a jumps occurs) is given by α ·

[
pjkλ

P − qjkλ
Q
]
Vt.

From these specifications we obtain the following dynamics under the risk-neutral
measure Q:

dSt = rStdt+
√
VtStdB̃

(1)
t + St−

(∑
j,k

x(j)dN
(j,k)
t − EQ[X]λQVtdt

)
dVt = κQ(v̄Q − Vt)dt+ σV

√
Vt

(
ρdB̃

(1)
t +

√
1− ρ2dB̃

(2)
t

)
+

(∑
j,k

y(k)dN
(j,k)
t − EQ[Y ]λQVtdt

)
,

where the intensity of the Poisson process dN
(j,k)
t is now λQVt qjk. In the general case,

both, the jump intensity and the jump size distribution, are different under P and Q. The
parameters of the volatility process under the measures P and Q are related via

κQ(v̄Q − Vt)− EQ[Y ]λQVt = κP (v̄P − Vt)− EP [Y ]λPVt − σV

(
ρηB1 +

√
1− ρ2 ηB2

)
Vt,

so that

κQ = κP + σV

(
ρηB1 +

√
1− ρ2 ηB2

)
+
(
EP [Y ]λP − EQ[Y ]λQ

)
(3)

κQv̄Q = κP v̄P . (4)

The expected excess return on equity is given by

µt − r =
(
ηB1 + EP [X]λP − EQ[X]λQ

)
Vt.

It combines the compensation for diffusion risk and the compensation for jump risk and
is proportional to the local variance Vt. In the setup of Liu, Longstaff, and Pan (2003),
where only the stock and the money market account are traded, the relative size of these
two risk premia does not matter. However, in our model where both risk factors can be
traded separately, the decomposition of the equity risk premium into the compensations
for these two risk factors becomes important.
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A very attractive feature of the analysis in Liu and Pan (2003) is that the market is
complete, so that instead of pre-specifying tradable assets and focusing on the investor’s
demand for this particular set of assets, one can work with the more general concept of
demands for the various risk factors driving the economy. In the setup considered here, the
market is complete when the number of non-redundant derivatives is equal to the number
of possible stock-volatility jump realizations that occur with positive probability plus one
to hedge the stochastic volatility factor. In the general case we thus need M additional
traded instruments besides the stock and the money market account. To achieve market
completeness with a finite number of derivatives, we have to assume that the jump size
distribution is discrete with a finite number of possible values but we cannot assume
continuous jump size distributions. However, our setup is rich enough to study the case
of stochastic jumps and to analyze possible differences to the case of deterministic jumps
only, and additionally, differences between the three types of jumps. Furthermore, we have
to assume that enough contingent claims are traded. While this may not be the case for all
underlyings, we do think this assumption to be justified when we focus on stock indices
e.g.. Here we usually observe a large number of options with sufficient trading volume
so that an investor could use them for his asset allocation. The assumption of market
completeness allows us to focus on the structural impact and economic importance of
jumps in volatility.

We now consider the contingent claims that are traded in our economy. Let O
(i)
t =

g(i)(St, Vt) (i = 1, 2, . . . ,M) denote the price of the i-th derivative as a function of the
state variables. The dynamics of the price follow from Ito and the fundamental partial
differential equation, and we obtain

dO
(i)
t = rO

(i)
t dt

+
(
g(i)

s St + σV ρg
(i)
v

) (
ηB1Vtdt+

√
VtdB

(1)
t

)
+ σV

√
1− ρ2g(i)

v

(
ηB2Vtdt+

√
VtdB

(2)
t

)
+

(∑
j,k

∆(j,k)g(i)dN
(j,k)
t − EP

[
∆g(i)

]
λPVtdt

)
+
(
EP
[
∆g(i)

]
λP − EQ

[
∆g(i)

]
λQ
)
Vtdt

where the exposures to stock price diffusion risk, volatility diffusion risk, and jump risk
are given by

g(i)
s =

∂g(i)(s, v)

∂s

∣∣∣∣
(St,Vt)

g(i)
v =

∂g(i)(s, v)

∂v

∣∣∣∣
(St,Vt)

∆(j,k)g(i) = g(i)((1 + x(j))St− , Vt− + y(k))− g(i)(St− , Vt−).

For standard European call and put options these expressions can be calculated using the
option pricing model in Duffie, Pan, and Singleton (2000). In contrast to Liu and Pan
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(2003), closed form solutions for the Fourier transforms needed to price options are no
longer available. However, the numerical evaluation of the respective differential equations
is rather straightforward.

3 Portfolio Planning Problem

The objective of the investor is to maximize the expected utility of terminal wealth, i.e.
there is no intermediate consumption. The assumed utility function is of the CRRA type
with risk aversion parameter γ. The tradable assets in our economy are the money market
account, which earns interest at the constant rate r, the stock, and a sufficient number
of derivative assets written on the stock, so that the market is complete. Kraft (2003)
and Korn and Kraft (2004) focus on the technical aspects of such continuous-time asset
allocation problems in the context of stochastic investment opportunity sets.

The investor’s optimization problem and its solution are structurally similar to Liu
and Pan (2003). Compared to their paper we present a significant generalization of the
jump component in the dynamics of the state variables. First, we include jumps in volati-
lity in addition to price jumps, and, second, we allow for non-deterministic jump sizes. As
a result, our model represents an economy where jumps may occur in the stock price only,
in the variance only, or in both processes simultaneously. The structure of the jump size
distribution shown in Table 1 makes it possible to generate different correlation structures
for the jump sizes.

Let φt and ψ
(i)
t , i = 1, 2 . . . ,M , represent the fractions of wealth invested in the stock

and in the M derivative assets, respectively. In the case that φt +
∑M

i=1 ψ
(i)
t 6= 1 the

remaining wealth is invested in the money market account. The stochastic differential
equation for wealth is then given by

dWt = Wt

{(
1− φt −

M∑
i=1

ψ
(i)
t

)
rdt+ φt

dSt

St

+
M∑
i=1

ψ
(i)
t

dO
(i)
t

O
(i)
t

}
.

For the following analysis, it is useful to work with exposures to the fundamental risk
factors B(1), B(2), and to the M − 1 different jump events instead of portfolio weights.
Rewriting the dynamics of wealth in terms of these exposures, one obtains

dWt = rWtdt+ θB1
t Wt

(
ηB1Vtdt+

√
VtdB

(1)
t

)
+ θB2

t Wt

(
ηB2Vtdt+

√
VtdB

(2)
t

)
+Wt

(∑
j,k

θN(j,k)

t dN
(j,k)
t −

∑
j,k

qjkθ
N(j,k)

t λQVtdt

)
. (5)

The fraction of wealth θB1
t invested in risk factor

√
VtdB

(1)
t is related to the investment

in the traded assets via

θB1
t = φt +

M∑
i=1

ψ
(i)
t

(
g

(i)
s St

O
(i)
t

+ σV ρ
g

(i)
v

O
(i)
t

)
. (6)
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Analogously, we find

θB2
t = σV

√
1− ρ2

M∑
i=1

ψ
(i)
t

g
(i)
v

O
(i)
t

(7)

with θB2
t representing the fraction of wealth invested in

√
VtdB

(2)
t , and

θN(j,k)

t = φtx
(j) +

M∑
i=1

ψ
(i)
t

∆(j,k)g(i)

O
(i)
t

(8)

where θN(j,k)

t stands for the fraction of wealth invested in the risk factor dN
(j,k)
t with jump

sizes (x(j), y(k)). So θN(j,k)

t gives the relative jump in wealth if there is a jump of size x(j)

in the stock price and of size y(k) in volatility. For example, θN(j,k)

t < 0 means that the

investor’s wealth will decrease by θN(j,k)

t · 100 percent when a jump of type (j, k) occurs.
This notation differs from the one used in Liu and Pan (2003) in that the sign of θN

t

immediately indicates the direction of the wealth change in case of a jump.

When the market is complete, any exposure (θB1
t , θB2

t , θN(j,k)

t ) can be obtained by
suitable positions in the stock, the money market account, and the contingent claims.
The positions in the traded assets follow from solving the system of equations (6), (7) and

(8) for φt and ψ
(i)
t (i = 1, 2, . . . ,M).

The investor’s optimization problem is given by

max�
θB1
t ,θB2

t ,θN(j,k)
t (j,k):pjk>0,0≤t≤T

�E
[

1

1− γ
W 1−γ

T

]

subject to the wealth dynamics in (5). The associated indirect utility function J(t, w, v)
is then obtained as

J(t, w, v) = maxn
θB1
s ,θB2

s ,θN(j,k)
s (j,k):pjk>0,t≤s≤T

oE
[

1

1− γ
W 1−γ

T

∣∣∣∣Wt = w, Vt = v

]
,

again subject to (5). From this we can immediately derive the Hamilton-Jacobi-Bellman
(HJB) equation:

max
{θB1

t ,θB2
t ,θN(j,k)

t (j,k):pjk>0}

{
Jt + wJW

(
r + θB1

t ηB1v + θB2
t ηB2v −

∑
j,k

qjkθ
N(j,k)

t λQv

)

+
1

2
w2JWWv

[
(θB1

t )2 + (θB2
t )2

]
+ λPv

∑
j,k

pjk

[
J(t, w(1 + θN(j,k)

t ), v + y(k))− J(t, w, v)
]

+
[
κP (v̄P − v)− EP [Y ]λPv

]
JV +

1

2
σ2

V vJV V

+ σV vwJWV

(
ρθB1

t +
√

1− ρ2θB2
t

)}
= 0, (9)
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where subscripts of J denote partial derivatives.

To find the optimal portfolio composition, one first needs to know the indirect utility
function J . The usual guess for this function, as in Liu and Pan (2003) and numerous
other papers, is

J(t, w, v) =
w1−γ

1− γ
exp {γh(τ) + γH(τ)v} , (10)

where τ = T − t. After computing the necessary partial derivatives one can deduce
the optimal exposures θ∗B1

t , θ∗B2
t , and θ∗N

(j,k)

t to the fundamental risk factors
√
VtdB

(1)
t ,√

VtdB
(2)
t , and jumps of size x(j) in the stock price and y(k) in volatility from the standard

first-order conditions. They are given in the following lemma.

Lemma 1 (Optimal exposures to fundamental risk factors) The optimal expo-
sures to the fundamental risk factors are given by

θ∗B1
t =

ηB1

γ
+ ρσVH(τ) (11)

θ∗B2
t =

ηB2

γ
+
√

1− ρ2σVH(τ) (12)

θ∗N
(j,k)

t =

[(
pjkλ

P

qjkλQ

)1/γ

− 1

]
+

(
pjkλ

P

qjkλQ

)1/γ [
eH(τ)y(k) − 1

]
(13)

with θ∗N
(j,k)

t ≥ −1 for all j, k.

Note the additional restriction for θ∗N
(j,k)

t , which assures that wealth cannot become ne-
gative. The optimal portfolio weights for the risky assets follow immediately from these
optimal weights via Equations (6), (7) and (8).

Finally, the Expressions (11), (12), and (13) are plugged back into the HJB equation
(9). Collecting terms with and without v one obtains the following system of ordinary
differential equations for the functions h and H:

h′(τ) = κP v̄PH(τ) +
1− γ

γ
r (14)

H ′(τ) = a+ bH(τ) + cH2(τ) + λQ
∑
j,k

qjk

[(
pjkλ

P

qjkλQ

)1/γ

exp{y(k)H(τ)}

]
(15)

with the boundary conditions h(0) = H(0) = 0 and

a =
1− γ

2γ2

[
(ηB1)2 + (ηB2)2

]
+

1− γ

γ
λQ − 1

γ
λP

b = −
(
κP + EP [Y ]λP

)
+

1− γ

γ
σV

(
ρηB1 +

√
1− ρ2ηB2

)
c =

1

2
σ2

V .
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In Liu and Pan (2003), Y is identically equal to zero, and the partial differential equation
(15) for H is a Ricatti equation with constant coefficients. In this case, a closed form
solution is available for both H and h. This is no longer true in the general case where
the volatility jump size is different from zero or even stochastic. Now, the system (14, 15)
has to be solved numerically, e.g. via the Runge-Kutta method.

Nevertheless, our function H shares an important property with the corresponding
function in Liu and Pan (2003), namely that H(τ) ≥ 0 for γ < 1, H(τ) ≤ 0 for γ > 1,
and H(τ) = 0 for the log-investor with γ = 1. A proof is given in Appendix A.

This property of H implies that the indirect utility of the investor is increasing in V .
To get the intuition, note that we have made the by now standard assumption that the
size of the market price of risk is increasing in V for all risk factors. The higher V , the
larger the compensation earned by the investor per unit of risk, and the larger therefore
his utility.

In the economy analyzed by Liu, Longstaff, and Pan (2003) only the stock and the
money market account are traded, which is in our case equivalent to imposing the addi-
tional restrictions θ∗B1

t = φt, θ
∗N(j,k)

t = φtx
(j) and θ∗B2

t = 0 when solving for the optimal
exposure. Without derivatives, the exposure to the second diffusion risk with impact on
volatility only is equal to zero, and the relation between the exposure to the first diffu-
sion risk and to jump risk is fixed at the relation of these risk factors for the stock. The
introduction of derivatives completes the market and allows the investor to trade the risk
factors separately. In Section 5, we will analyze the economic value of this possibility.

The optimal demand in (11), (12), and (13) has two basic sources which were already
discussed by Merton (1971). First, the investor wants to earn the risk premium for the
respective factor, which represents the myopic or speculative demand, given by the first
summand. Second, there is also a desire to hedge against unfavorable changes in the
state variables determining the investment opportunity set, i.e. in our framework against
changes in V . This is the investor’s hedging demand, given by the second summand.

The most important difference between a model that allows for jumps in volatility
and the setup studied by Liu and Pan (2003) where jumps affect the stock price only
is that the optimal demand for jump risk now contains a hedging component which is
not present in an economy without variance jumps. This hedging demand is given by the
second summand in Equation (13). For y(k) > 0, there will thus be demand for jump risk

(θ∗N
(j,k)

t 6= 0) even in the case when λPpjk = λQqjk, i.e. when the jump risk premium is
zero. To get the intuition, note that the hedging demand arises because the investor wants
to hedge against unfavorable changes in volatility. Expressing this in terms of exposures
to risk factors, there will thus be a hedging demand in all factors that have an impact on
volatility. For a jump with y(k) 6= 0, this generates a hedging demand in this jump risk
factor.

The hedging demand of the investor arises from the impact of V on the compensation
per unit of risk, as, e.g. discussed in Munk (2004) or Munk and Sørensen (2004). For small
V , the expected return earned by the investor on his myopic exposure is low, and the risk
of a large negative return and thus a low terminal wealth is comparably high. This induces
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the investor to shift wealth from states with high V to states with low V . On the other
hand, for high V , the expected return is high. This induces the investor to shift wealth to
states with a high V to grasp these good investment opportunities. Taken together, his
ultimate hedging demand depends on the trade-off between these two opposite effects. As
described in Liu (2001), for γ > 1, the utility function of an investor is unbounded from
below, but bounded from above. He cares more about states with low V since this implies
a higher probability of losses due to a lower expected return. Thus, his hedge is to take
a short position in V . In line with this intuition, the marginal indirect utility JW of the
investor is decreasing in V , which formally follows from the fact that H is non-positive.
A low volatility thus corresponds to a high indirect utility, implying a ’bad state’. For
γ < 1, on the other hand, the utility function of the investor is bounded from below and
unbounded from above, and he speculates by taking a long position in volatility. Finally,
for γ = 1, both effects exactly offset each other, and the investor is neutral with respect
to changes in the investment opportunity set.

In contrast to Liu and Pan (2003) this hedging demand can now be met by a position
in all risk factors and not only in the two diffusive risks. Consider the case γ > 1. H is
non-positive and the investor wants to hedge by taking a short position in variance. The
hedging demand for the first diffusion dB(1) will be positive if ρ < 0, and the hedging
demand for the second diffusion dB(2) will be negative. Given that any jump in volatility
is an upward jump, the hedging demand for all jumps that also affect volatility will be
negative, while there will be no hedging demand for jumps that occur only in the stock
price. The analysis for γ < 1 proceeds along the same lines, showing that the investor now
hedges by taking a long position in variance, which results in a positive hedging demand
for jump risk.

To explain the structure of the jump demand in our model in more detail, consider
two pairs of jump size realizations (x(a), y(a)) and (x(b), y(a)) with paa = pba = 0.5. To
focus on price jumps the volatility jump size is the same for both pairs. Assume γ > 1,
x(b) < x(a) < 0, y(a) > 0 and λP = λQ, i.e. there is no jump intensity premium.

If paa/qaa = pba/qba = 1, the jump size premium is also zero. There is no myopic
demand here, and the negative hedging demand is equal for both jump realizations, i.e.
θN(a,a)

t = θN(b,a)

t < 0. For the hedging demand, it is thus only the size of y(1) that matters.
Note that there is no insurance against price jumps, but the investor is willing to give up
wealth in situations when volatility has jumped upwards.

Now let paa/qaa > 1 > pba/qba. This means that the jump size premium is relatively
higher for large negative jumps, so that insurance against these jumps is relatively more
expensive. This corresponds to the stylized facts reported in the literature, namely that
out-of-the-money put options seem very expensive. In this scenario we obtain a positive
myopic demand for jump type (a, a) and a negative myopic demand for jump type (b, a),
where the investor earns a risk premium in both cases. The hedging demand is still
negative for both jump realizations. In absolute terms it is larger than in Case I for jump
(a, a) and smaller for jump (b, a). In total there is definitely no insurance against large

jumps, since θN(b,a)

t < 0, but the sign of θN(a,a)

t is not determined.
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When paa/qaa < 1 < pba/qba, the situation is exactly reversed. The total position
of the investor will not contain protection against small jumps, but there may be insu-
rance against large negative jumps, depending on the trade-off between risk premium and
additional utility derived from hedging.

4 Numerical Example: Deterministic Jumps

For the numerical example, we focus on the framework used for the examples in Liu,
Longstaff, and Pan (2003), where the jump sizes for both the asset price and the variance
are deterministic, i.e. we set X ≡ µX and Y ≡ µY . This also implies that the jump
size distribution degenerates into a single point, which implies that the pricing of jump
risk depends on the difference between λP and λQ only, while the jump size distributions
are degenerate. Assuming the usual case of a negative jump size for prices (µX < 0) and
upward jumps in volatility (µY > 0), a jump decreases prices and simultaneously increases
volatility, which can be regarded as an increase in uncertainty after a market crash.

Due to the simpler structure of the model compared to the general case, now only
two non-redundant derivatives are needed to complete the market. Liu and Pan (2003)
show that the market is complete if the claims satisfy the restriction Dt 6= 0, where

Dt =

(
∆g(1)

µXO
(1)
t

− g
(1)
s St

O
(1)
t

)
g

(2)
v

O
(2)
t

−

(
∆g(2)

µXO
(2)
t

− g
(2)
s St

O
(2)
t

)
g

(1)
v

O
(1)
t

(16)

and ∆g(i) = g(i)((1 + µX)St− , Vt− + µY ) − g(i)(St− , Vt−). This condition says that the
determinant of the local sensitivity matrix of the two derivative contracts must not be
zero, implying that the two contracts are linearly independent.

The transformation from risk exposures to asset positions works as in Liu and Pan
(2003). For the risk exposure to the deterministic jumps, we now take the simpler notation

θN
t instead of θN(j,k)

t . Solving Equations (6), (7) and (8) for the optimal positions in the
stock and in the derivative assets gives:

φt = θB1
t −

2∑
i=1

ψ
(i)
t

(
g

(i)
s St

O
(i)
t

+ σV ρ
g

(i)
v

O
(i)
t

)
(17)

ψ
(1)
t =

1

Dt

[
g

(2)
v

O
(2)
t

(
θN

t

µX

− θB1
t +

θB2
t ρ√
1− ρ2

)
− θB2

t

σV

√
1− ρ2

(
∆g(2)

µXO
(2)
t

− g
(2)
s St

O
(2)
t

)]
(18)

ψ
(2)
t =

1

Dt

[
θB2

t

σV

√
1− ρ2

(
∆g(1)

µXO
(1)
t

− g
(1)
s St

O
(1)
t

)
− g

(1)
v

O
(1)
t

(
θN

t

µX

− θB1
t +

θB2
t ρ√
1− ρ2

)]
(19)

Note the typo in Liu and Pan (2003), where the term θB2
t ρ/

√
1− ρ2 is subtracted rather

than added in both the second and the third equation.

One of the main items of interest in our paper is the impact of variance jumps on
the structure of the optimal demand functions. To analyze this impact, we first perform
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a sensitivity analysis with respect to the deterministic volatility jump size µY . All other
parameters are unchanged, which implies in particular that the variance of variance and
the mean variance will change. Therefore, we refer to this analysis as the uncalibrated
case. The key new result derived in Section 3 is that with jumps in volatility, the jump
demand exhibits a hedging component in addition to the familiar speculative part. Since
the size and direction of hedging demand primarily depends on the function H(τ), we
first take a closer look at the impact of the variance jump size on this function.

The comparison is based on the benchmark parametrization in Liu, Longstaff, and
Pan (2003). In our notation, the parameters are κP = 5.3, v̄P = 0.11512

5.3
= 0.021721,

σV = 0.22478, ρ = −0.57, λP = 1.84156, µX = −0.25, and µY = 0.22578. Furthermore,
we assume that jump risk and diffusion risk each account for half of the expected excess
return on the stock, and we choose ηB2 = −2.0, where the negative sign can be justified
based on the discussion in Liu and Pan (2003). This yields the following values for the other
parameters in the model: κQ = 2.40292, v̄Q = 0.04791, λQ = 11.64964 and ηB1 = 2.45112.
Table 2 summarizes these values as Parametrization I.

Figure 1 shows the function H as a function of the planning horizon τ for the bench-
mark case µY = 0.22578 as well as for µY = 0.0 and µY = 0.1. The coefficient of risk
aversion is equal to 3. For all three values of µY , the function H is zero for τ = 0 and
decreases sharply for short planning horizons. It then approaches an ’asymptotic’ value
for planning horizons of more than one year, where the asymptotic value is determined
by the parameters. The hedging demand, which depends on the planning horizon only
through H, is thus zero for τ = 0 and stabilizes at some value for increasing time to
maturity. Intuitively, this can be explained by the existence of some ’upper bound’ on the
hedging demand of the investor. Even if the investor is risk averse, he is still willing to
take some risk to earn the risk premia.

The absolute value of H is increasing in µY , so that the hedging demand is also
increasing in µY . Intuitively, an increase in the variance jump size increases the variance
of variance. The higher variance risk then leads to a higher hedging demand against this
risk factor. This is not only true for the hedging demand in jump risk, but also for the
hedging demand in diffusion risk, which can be explained by a higher overall concern of
the investor about variance risk. Note that the analysis performed here is a sensitivity
analysis in which we assume that only µY changes.

In the next step, we investigate the economic consequences of the presence of a jump
component in the volatility process, i.e. the impact of variance jumps and their size on
optimal exposures to risk factors and optimal portfolio decisions. Again, we consider the
case of jumps with deterministic sizes µX and µY . As in the above analysis µY will be
taken from the set {0, 0.1, 0.22578}. However, now we will not simply leave all other
parameters unchanged when we compare economies with volatility jumps to one without.
When varying µY one has to make sure that the market information the investor could
use to calibrate the model of his choice is correctly represented in the parametrization.
This is what we call the calibrated case. For example, the parameters plugged in the
model chosen by the investor must result in correct values for expected stock returns,
option prices, or risk premia. In more detail, the following parameters were restricted to
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be identical across models: the instantaneous expected excess return on the stock (given
by
(
ηB1 + µX

(
λP − λQ

))
v̄P in all of the models), the instantaneous variance of stock

returns (given by v̄P + µ2
Xλ

P v̄P in the two models with volatility jumps and by v̄P in
the one without), the instantaneous variance of variance (given by σ2

V v̄
P +µ2

Y λ
P v̄P in the

models with volatility jumps and by σ2
V v̄

P in the one without), the average time between
two jumps (given by (λP v̄P )−1 in all models), and the relative jump size in the stock price
(given by µX in all models). Furthermore, we assume that V0 is the same in all models and
equal to v̄P . To ultimately calibrate the model, three additional option prices are needed.
We use two European call options with a time to maturity of three months and strike
prices equal to 90% and 100% of the initial stock price. The third option is a European
call with one month to maturity and a strike price equal to 90% of the initial stock price.
The prices of these options are computed based on the model developed by Duffie, Pan,
and Singleton (2000).

As above, the benchmark case is given by the model and the associated parameters
described in Liu, Longstaff, and Pan (2003). Table 2 shows the benchmark case, denoted
by Parametrization I, as well as Parametrization II (µY = 0.1), and Parametrization III
(µY = 0). The scenario µY = 0.1 was included to represent the case, where the investor
correctly assumes that volatility can jump, but uses a wrong jump size. Due to the fact
that jumps are rare, the moments of the jump size are subject to severe estimation risk,
so that such an error can occur easily. In general, with a decreasing volatility jump size
µY , the calibration yields a lower speed of mean reversion κP and a higher level of the
volatility of volatility σV . This result can be explained intuitively by noting that, with
smaller jumps in volatility, the instantaneous variance of variance has to be generated to
a larger degree (or even completely) by the diffusive part of the volatility dynamics. This
results in higher levels of σV and lower levels of κP .

We assume that the derivatives used by the investor to form his portfolio are the two
3-month call options described above. Our choice of these options is motivated by two
considerations. First, options with these characteristics are usually highly liquid. Second,
an ATM call is a standard choice for a volatility sensitive instrument, while the option
with the lower strike price has a large exposure to jump risk.

We first analyze the properties of the function H(τ) for different values of µY . From
Figure 2 we can see that the impact of τ is quite similar to the case analyzed in Figure
1. Again, H(τ) is zero for τ = 0 and increases sharply in absolute terms for increasing
τ , before it approaches an asymptotic value. The approximation to this asymptotic value
is much slower for µY = 0.0 than for the benchmark case of µY = 0.22578. This can be
explained by the smaller speed of mean reversion of volatility, due to which it takes longer
for volatility shocks to die out.

The impact of µY , however, is significantly different depending on whether we only
vary µY as in Figure 1 or recalibrate the model as in Figure 2. While in the first case,
H(τ) in increasing in absolute value in µY , it is now decreasing in µY . To get the intuition,
note that we fix the variance of variance at some level. If we wrongly assume a model
without jumps in volatility, then the whole variance of variance has to be explained by the
diffusion components, and the hedging demand of the investor in the diffusion component
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increases, which implies that H(τ) increases in absolute value for µY decreasing.

In a second step, we analyze the impact of µY on the decisions made by the investor.
The optimal exposures are given in (11), (12) and (13). For the special case Y = µY = 0.0
and X = µX , the expressions coincide with the formulas given in Liu and Pan (2003),
where the function H(τ) can be obtained in closed form. The conversion of optimal expo-
sures into optimal asset positions ψ(1), ψ(2), and φt works as described above via Equations
(17), (18) and (19). Note, however, that the optimal exposures represent the basic result,
whereas the optimal asset positions are the ’derived’ result. These numbers naturally
depend on the choice of assets, and there is no unique representation. So our results con-
cerning the stock and the two calls represent only one possible example for the portfolio
composition. Nevertheless, in reality the investor has to buy (or sell) assets to achieve
the desired exposure, so that differences with respect to this output of the model actually
describe the differences in behavior one would see in the real world.

Figure 3 shows the optimal exposures to the fundamental risk factors for varying time
horizons and different values of µY . For very short horizons the optimal exposures almost
exclusively reflect myopic demand, so all differences between the parametrizations can be
attributed to the different risk premium for

√
V dB(2). Note that the risk premia for the

other two risk factors coincide for all calibrations by assumption. When µY = 0.0, all the
variance risk is attributed to the two diffusion risk factors, which increases the hedging
component of the demand compared to the cases with µY > 0. On the other hand, there
is only myopic demand in jump risk, so that the planning horizon is irrelevant for the
optimal exposure. The larger µY , the more important jump risk is for hedging volatility
risk, and the less important are the diffusions. Consequently, the optimal exposure to
jump risk depends more on the planning horizon, while the dependence of the optimal
exposure to the two diffusions on the planning horizon becomes less pronounced. Finally,
with increasing planning horizon the optimal exposures are more or less constant for all
three values of µY . The investor tends to change his portfolio allocations to a smaller
degree when the investment horizon is still long.

The picture changes when we look at asset positions which are given in Figure 4. Now,
the differences between the three models are much more pronounced. The positions in the
assets vary significantly for τ = 0, despite the fact that the optimal exposures to the risk
factors dB(1) and to jump risk are the same. This can be attributed to the fact that the
sensitivities of the derivatives are calculated in different models and vary substantially.
The value of µY has a significant impact on the optimal portfolio. For µY = 0.0, e.g., the
optimal position in the stock is negative for longer planning horizons, while it is positive
in the other two cases with µY > 0. Finally, for the optimal holdings of the traded
assets, we observe that for longer planning horizons the optimal positions tend towards
an ’asymptotic’ value which again depends on µY .
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5 Economic Value of Derivatives

In this section we assess the economic value of derivatives. As stated in the introduction,
we augment the choice set of the investor relative to the analysis in Liu, Longstaff, and
Pan (2003), since now all the necessary market completing derivatives are assumed to be
traded. A comparison to the case where only the stock and the money market account are
traded allows us to assess the economic value of trading derivatives, thus extending the
analysis of Liu and Pan (2003) to the case of jumps in volatility. Clearly, this represents a
first step, since we perform the analysis in a partial equilibrium context, where the prices
of assets already traded are implicitly assumed to remain unchanged. As discussed above
derivatives allow the investor to trade the risk factors separately. Compared to a situation
where he can only trade the stock and the money market account, his utility will thus
necessarily increase.

To measure the economic value of derivatives, we use the portfolio improvement mea-
sureRW as proposed by, among others, Liu and Pan (2003). It is defined as the annualized
percentage difference in certainty equivalent wealth

RW =
ln
(
W/Ŵ

)
T

,

where W (Ŵ) is the certainty equivalent wealth for the case with (without) derivatives.

W and Ŵ are defined implicitly via

J(0,W0, V0) =
W1−γ

1− γ

and

Ĵ(0,W0, V0) =
Ŵ1−γ

1− γ

with J (Ĵ) representing the indirect utility function with (without) derivatives. Since the
investor has constant relative risk aversion, RW does not depend on his initial wealth W0.

As in Section 4 we analyze the special case with simultaneous and deterministic
jumps in the stock and in volatility. The indirect utility function Ĵ can be computed
as in Liu, Longstaff, and Pan (2003), while for the computation of J we first need to
solve Equations (14) and (15) numerically and then plug the solution to this system into
(10). The comparison between the situations with and without derivatives is based on
Parametrization I from Table 2. Derivatives allow the investor to achieve his optimal
exposure to the individual risk factors. Without derivatives, his exposure to the second
diffusion factor B(2) is zero, and the relative exposure to diffusion risk B(1) and jump risk
is fixed at the relation of these two risk factors in the stock.

Figure 5 illustrates the portfolio improvement RW as a function of the planning
horizon, the speed of mean reversion, the jump risk premium (captured by the relation of
the risk-neutral and the true jump intensity), and the variance jump size. The upper left
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graph shows the portfolio improvement measure RW for varying planning horizon τ . For
τ = 0, there is only myopic demand, and the portfolio improvement of 3% arises from the
ability of the investor to achieve this optimal demand. For increasing time horizons, there
is an additional gain from achieving the optimal hedging demand, too, and the portfolio
improvement stabilizes at nearly 5.5% for a horizon of more than 2 years.

The upper right graph shows the impact of the speed of mean reversion on the portfolio
improvement. The higher κP , the less impact shocks in variance have, and the lower the
variance of variance. Consequently, hedging becomes less important for increasing κP .
For κP between one and two, the optimal demand of the investor which can be reached
by trading derivatives is the most different from the risk package offered by the stock
and the money market account only. For other values of κP , the change in the absolute
hedging demand lowers this difference between optimal exposure and exposure attainable
without trading derivatives, so that the portfolio improvement becomes smaller. For very
high values of κP , the hedging demand goes to zero, and the portfolio improvement can
be attributed to the possibility to achieve the optimal myopic exposure, only.

The impact of the risk-neutral jump intensity λQ is shown in the lower left graph.
The more λQ differs from the (fixed) λP , the larger the compensation for a position in
jump risk. The impact of a given difference between the optimal exposure and the package
offered by the stock on the portfolio improvement thus increases. Furthermore, a change
in λQ changes the optimal myopic exposure to jump risk and the hedging exposure to all
three risk factors. Similar to the discussion for κP , the portfolio improvement tends to
increase in the differences between the resulting optimal exposure and the package offered
by the stock. In our example, the minimal improvement is realized for λQ/λP ≈ 1.6.

Finally, the lower right graph shows the portfolio improvement for a varying variance
jump size µY . The larger µY , the larger the variance of variance, and the larger the
investor’s hedging demand. Trading in derivatives, which allows him to meet this hed-
ging demand in particular in jump risk, thus becomes more valuable, and the portfolio
improvement increases in µY .

6 Model Mis-Specification

We now investigate the consequences of model mis-specification in the context of volatility
jumps. Note that this mis-specification can go two ways. The investor either uses a model
that is ’too small’, e.g. by ignoring volatility jumps, or one that is ’too large’, e.g. by
including such jumps although they are not a part of the true model. We have seen
in Section 4 that asset positions and optimal exposures to risk factors usually change
noticeably when different models are used. However, the ultimate measure for the impact
of model mis-specification is the loss in utility the investor has to suffer when using
incorrect dynamics for the stock price or for volatility. Again the analysis considers the
case of deterministic jumps, and the different models are calibrated to the same set of
prices, risk premia, and moments for the stock price and its variance.
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To analyze the impact of model mis-specification, we proceed in several steps. First, we
calculate the (seemingly) optimal exposure to the risk factors, derived from the improper
model. Then these exposures are transformed into asset demands, using Equations (17),
(18) and (19), with the sensitivities still based on the incorrect model. This gives the
portfolio the investor will actually buy at the market. In the final step, the asset positions
are converted back into realized exposures, now based on the sensitivities in the true
model, using Equations (6), (7) and (8). Note that this last step in the calculation can
only be done to analyze the impact of model mis-specification, but not by the investor
who does not know the true model.

First, we consider the situation where the true model is given by Equations (1) and
(2) and includes volatility jumps, but where the investor bases his decision on a model
without jumps in volatility. The true model is thus given by Parametrization I from Table
2, while the investor ignores volatility jumps, i.e. uses Parametrization III from Table 2.
Figure 6 shows the realized exposures as a function of the planning horizon, where we
have set the local variance equal to its long run mean v̄P . A comparison of this figure with
the (seemingly) optimal exposures in the lower graph of Figure 3 and the truly optimal
exposure in the upper graph shows that the use of the wrong sensitivities can have a
significant impact. In particular, in the correct model with µY = 0.22578, the optimal
exposure to jump risk is increasing in the planning horizon (in absolute terms), while
in the improper model with µY = 0.0, the investor considers a constant exposure to be
optimal, and he ends up with an exposure to jump risk that is actually decreasing in the
planning horizon (in absolute terms).

Figure 7 shows the results for the opposite case when the true model is without jumps
in volatility. The true model is thus given by Parametrization III from Table 2, while the
investor uses Parametrization I from Table 2. The realized exposures to the risk factors
are increasing in absolute value compared to the optimal case, so that the investor holds
positions with a higher level of risk. Whereas the optimal exposure to jump risk in the
true model is now constant for all investment horizons, the realized exposure increases
with the investment horizon in absolute value.

Knowledge of realized exposures under a mis-specified model is the necessary pre-
requisite for the determination of the utility loss suffered by an investor who bases his
decision on an incorrect specification. The difference between optimal and realized risk
exposures will in general depend on the differences in the parameters and risk premia
as well as on the differences of the sensitivities of the traded assets under the true and
the assumed model. This implies that the differences also depend on the current level of
volatility. Due to this additional dependence on V , the indirect utility for the mis-specified
model cannot be computed in closed-form as in Liu, Longstaff, and Pan (2003), who only
consider trading in the stock and the money market account, i.e. in linear claims whose
sensitivities cannot be mis-estimated. Instead, we have to determine the distribution of
terminal wealth via a Monte Carlo simulation. Furthermore, the lower bound on the jump
risk exposure which is supposed to prevent default can be imposed on the (seemingly)
optimal exposure, but not on the realized exposure. Thus, default becomes possible in a
mis-specified model. In the realistic case of γ ≥ 1, the utility of terminal wealth will go
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to −∞ when terminal wealth goes to zero. The indirect utility may thus take on large
negative values, and the portfolio improvement as calculated in Section 5 has no real
meaning anymore. We therefore focus on the comparison of the distributions of terminal
wealth generated by the true and the mis-specified model.

In our simulation exercise we use 500,000 runs with two time steps per day. The
traded assets available to the investor at every time step are the stock, the money market
account, and two derivatives with a constant maturity of three months and strike prices
equal to 90 and 100 percent of the current stock price. This implies that the investor trades
in a new set of options every day. We simulate the dynamics of the investor’s wealth using
the realized exposures to the risk factors. It is important to note that the restriction on
θ∗Nt as stated in Equation (13) is only monitored for the (seemingly) optimal exposure,
but not for the realized one. This implies that the realized exposure can very well be too
large, so that default becomes a possibility. In this case or when the simulation produces
a negative value for wealth, we replace it by some positive number close to zero.

An implicit assumption behind our procedure is that there is no learning on the part
of investors, i.e. the model is calibrated only once at time t = 0. This is analogous to
the approach chosen by Liu, Longstaff, and Pan (2003). Given that jumps are infrequent
events, the estimation of jumps is quite difficult, which justifies to ignore the impact of
learning in a first approximation. Further research could analyze how much the investor
would really profit from learning about these infrequent events.

The results of the Monte Carlo simulation are given in Figure 8. The upper (lower)
graphs show the cumulative distribution functions of terminal wealth for an investment
horizon of 1 year (5 years). In the two graphs in the left column the true model contains
jumps in volatility, whereas in the right column µY = 0 in the true model.

In general the use of a wrong model generates a higher probability of large positive
levels of terminal wealth, but also a higher risk of obtaining levels of wealth close to
zero. Surprisingly, in the case where the true model does not contain volatility jumps and
where the investor thus uses a model that is too sophisticated, the difference between
the two distributions is even more pronounced. Additionally, we observe a rather high
shortfall probability of roughly 5% for an investment horizon of 5 years. Figure 7 can
help to explain this seemingly strange result. It shows that when a model with jumps in
volatility is used, the realized exposures to the risk factors are much higher than optimal.
Especially for jump risk, the realized exposure under model risk is much too high, so that
if a jump occurs, wealth may easily become negative.

In summary our results emphasize the importance of identifying the correct model,
since there is no easy way to hedge against the impact of model mis-specification when
it comes to portfolio planning. The use of a more simple model gives rise to a significant
default probability. This shows that a too parsimonious model is not robust. On the other
hand, a too sophisticated model may perform even worse. Additional risk factors which
are not included in the true model may actually lead to quite severe errors. Neither the use
of a (perhaps) too simple nor the use of a (perhaps) too sophisticated model thus offers
a reliable protection against significant losses in utility due to model mis-specification.
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7 Conclusion

Jumps in volatility are a phenomenon recently discussed in the literature dealing with
the stochastic properties of stock prices or option pricing. One of the main questions is
in which situations and for which problems the inclusion of this further risk factor has a
significant economic impact.

We discuss the impact of such volatility jumps on the optimal asset allocation in a
continuous-time framework. We suggest a very general formulation of the joint dynamics
of the stock price and its variance by employing a jump size distribution which is able
to capture both simultaneous jumps in both processes as well as individual jumps in the
stock price or the variance. Nevertheless, we retain market completeness by introducing
a sufficient number of additional traded assets (derivatives).

The main result of our theoretical analysis is that compared to an economy with no
jumps in volatility the demand for jump risk now also exhibits a hedging component in
addition to the usual myopic part. The hedging demand against unfavorable changes in
volatility is now split up between the two diffusion risk factors and the jump risk factor.

Besides this theoretical innovation we also assess the economic benefits generated by
the availability of derivatives to investors. In our framework derivatives actually complete
the market, so that an investor who has access to derivatives can achieve any desired
exposure to the fundamental risk factors. Our results show that the gains from trading
derivatives are indeed economically significant.

Since complicated option pricing models are sometimes hard to calibrate to market
data we investigate the cases in which an investor uses a simplified model ignoring volati-
lity jumps completely or under-estimating the jump size in volatility. We find that this
model or estimation error has a significant impact on optimal exposures and portfolio
compositions and thus represents an important risk factor when choosing the optimal
portfolio strategy. The same is true when the investor uses a model that includes jumps
in volatility while the true model does not. The additional risk factor may cause quite
severe deviations between the truly and the seemingly optimal portfolios. These results
emphasize the importance of identifying the correct model and show that the question of
whether there are jumps in volatility should not be ignored.

Further research could focus on a general equilibrium model where the market prices
of risk are no longer given exogenously. These market prices of risk as well as the trading
volume in derivatives would then depend on the heterogeneity of the investors, which may
differ with respect to their risk aversion or with respect to their prior beliefs about the
model.
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A Properties of the Function H(τ )

Since H(0) = 0, it follows from the differential equation (15) that

H ′(0) =
1− γ

2γ2

[
(ηB1)2 + (ηB2)2

]
+

1− γ

γ
λQ − 1

γ
λP + λQ

∑
j,k

qjk

[(
pjkλ

P

qjkλQ

)1/γ
]
.

The first term on the right hand side, containing the risk premia for the two diffusion
risk factors, obviously shares the sign of 1 − γ. With λP = αλQ and α > 0 rewrite the
remaining terms as

1− γ

γ
λQ − 1

γ
αλQ + λQ

∑
j,k

qjk

[(
pjk

qjk

)1/γ
]
α1/γ.

With λQ positive, this expression will be positive if and only if

f(α) =
∑
j,k

qjk

[(
pjk

qjk

)1/γ
]
α1/γ − 1

γ
α+

1

γ
− 1

is positive. The function f(α) has a local extremum at

α∗ =

(∑
j,k

qjk

[(
pjk

qjk

)1/γ
])−γ/(1−γ)

with

f(α∗) =

(
1

γ
− 1

)
(1− α∗).

The second derivative with respect to α is positive for γ < 1 and negative for γ > 1. So
for γ < 1 there is a global minimum at α∗, whereas for γ > 1 there is a global maximum
at α∗. With Jensen’s inequality and

∑
j,k qjk[

pjk

qjk
] = 1, one can first show that α∗ ≤ 1 for

all values of γ. The associated function values f(α∗) are then negative in the case γ > 1
and positive for γ < 1, so that f(α) is non-negative for γ < 1 and non-positive for γ > 1.

Assume now γ > 1. Then, H ′(0) < 0, and the function H(τ) moves into negative
territory over the first infinitesimal step in τ direction. Since the derivative ofH is negative
when H is equal to zero, and H is continuous in γ, the function can never cross the zero
line. An analogous argument can be made in the case when γ < 1. Problems that can
arise for very small values of γ where the investor is nearly risk-neutral are discussed in
Kim and Omberg (1996).
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Y = y(1) ≡ 0 Y = y(2) . . . Y = y(K)

X = x(1) ≡ 0 p11 = 0 p12 . . . p1K

X = x(2) p21 p22 . . . p2K
...

...
...

. . .
...

X = x(J) pJ1 pJ2 . . . pJK

Table 1: Jump Size Distribution

The table shows the structure of the jump size distribution in our model. X is the random
jump size in the stock price, Y is the size of a variance jump, where we assume Y ≥ 0.
The event X = 0, Y = 0 is assigned a zero probability in the joint distribution of X and
Y , since it represents the event that no jump has occurred.

µY κP κQ v̄Q σV ρ ηB2

I 0.226 5.300 2.403 0.048 0.225 −0.570 −2.000
II 0.100 2.451 0.500 0.106 0.355 −0.271 −2.104
III — 1.450 0.500 0.063 0.380 −0.321 −1.808

Table 2: Calibrated Parameters

The table summarizes the results of the calibration. Parametrization I corresponds to
the benchmark case of Liu, Longstaff, and Pan (2003). Parametrization III is the case
without jumps in volatility, which corresponds to the model setup of Liu and Pan (2003).
In Parametrization II, the variance jump size µY is set equal to 0.1. v̄P = 0.021721,
λP = 1.84156, λQ = 11.64964, µX = −0.25 and ηB1 = 2.45112 are the same for all
parametrizations.
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